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Computing the invariants of Lie superalgebras 

Nigel Backhouse 
Department of Applied Mathematics and Theoretical Physics, The University, P O  Box 147, 
Liverpool L69 3BX, UK 

Received 8 May 1978 

Abstract. Lie superalgebras (LS) generalise the class of Lie algebras (LA) by admitting a 
bracket multiplication which is sometimes commutative and sometimes anticommutative. 
It is known that such algebras can be represented by first-order Grassmann differential 
operators acting on Euclidean superfields. This leads, by generalising the usual procedure 
for LA, to a method for computing the Casimir invariants of any LS: first solve a system of 
Grassman differential equations to obtain the invariants of the graded symmetric algebra, 
and then map onto the centre of the enveloping algebra by means of the graded symmetris- 
ing isomorphism. 

1. Introduction 

The non-group theoretical boson-fermion equivalences in the supersymmetric theories 
of elementary particle physics continue to exercise theoretical physicists. One's intui- 
tive unease with such models, however, has been at least partially overcome by the 
remarkable successes of the associated ideas and formalism in the theories of super- 
gravity, for example see Freedman et a1 (1976), Deser and Zumino (1976). These 
achievements help to sustain interest and spur development in the mathematical physics 
literature for the now well established field of Lie superalgebras (also called z2-graded 
Lie algebras)-the mathematical abstraction of the underlying symmetry algebras of 
supersymmetry. 

We recall from Corwin et a1 (1975) that a Lie superalgebra (LS) L is a direct sum 
LoOLI of real or complex vector spaces Lo, the even subspace, and L1, the odd 
subspace. We attach a sign function (T to the set H = L o u L 1  of homogeneous 
elements, defined by (+(I) = 0 if 1 E Lo, but 1 if 1 E L1. L possesses a multiplication, 
denoted by [ , 1, which satisfies 

The LS which have occurred in supersymmetric theories and also some which occur 
in the classification scheme for simple LS of Kac (1977) are expressly given as algebras of 
linear differential operators, with both ordinary (real) and Grassman (anticommuting) 
variables, acting on Grassman algebra-valued functions (superfields), and which in 
supersymmetry leave invariant a super-Lagrangian. There is therefore some interest in 
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22 N Backhouse 

exploring and determining the sort of invariants that arbitrary LS can possess. In a 
previous paper, Backhouse (1977a), as part of a study of Killing forms, we showed how 
to compute series of homogeneous Casimir invariants for certain LS. These invariants 
lie in the centre of the enveloping algebra-the associative algebra generated by the LS 

and within which the bracket multiplication has interpretation, for homogeneous 
generators, as a commutator or an  anticommutator. Unfortunately the procedure was 
cumbersome even for the simplest of examples, and could only be used for the small 
number of LS which possess a non-degenerate second-order invariant form. It is the aim 
of the present paper to establish and  illustrate a method which can be applied to any LS 
to yield all of its Casimir invariants. This provides a generalisation of the well known 
theory for Lie algebras (LA) ,  whose Casimir invariants can be found by solving systems 
of first-order linear partial differential equations. A n  account of the latter method can 
be found in a recent article by Patera et a1 (1976), wherein its facility has been well 
illustrated. As shown by these authors, the procedure for LA does more than one  
originally asked of it, for it can produce invariants more exotic than those of Casimir 
(polynomial) type, which can lie even outside of the quotient field of the enveloping 
algebra. Of course a generalisation of this experience is a feature of our work here on 

Our procedure falls into two parts, the first analytic and the second algebraic in 
nature. W e  stated above that many LS have been given explicitly as algebras of 
Grassmann differential operators-we call them superdifferential operators. It is in fact 
true that any LS can be so represented. In 5 2 we make this more precise and remind 
ourselves of the algebraic properties of the operators of the appropriate Grassmann or 
superdifferential calculus. The  analytic part of our procedure for computing the 
invariants of a given LS, L say, is to seek superfields which are annihilated by the 
associated algebra of superdifferential operators. Some of these solutions, those whose 
coefficients are polynomials in the real variables, are the invariants of the graded 
symmetric algebra S ( L )  = S(Lo)O.A(Ll), where S ( L o )  is the symmetric algebra of Lo 
and A(L1) is the alternating or Grassmann algebra generated by L, .  In 5 3 we produce a 
symmetrising map which takes S ( L )  isomorphically onto  U ( L ) ,  the enveloping algebra 
of L, and has the property of taking invariants into invariants. We  illustrate this method 
in § 4, using as examples the ubiquitous di-spin algebra and some of the low-dimen- 
sional LS recently classified by us, Backhouse (1978). 

LS . 

2. Guperdifferentinl equations 

We recall that the Grassmann algebra G,, of dimension 2,,  is generated by an identity 
and a set of q independent anticommutingelements ulr ~ 2 ,  . . . , CT,. G, has basis(1 and 
all m,,vt2 . . , u , ~ :  1 s i l  < i2 < . . . < i, C q, 1 G r G q } .  Gq is determined by the relations 

that G, is the alternating algebra of a particular vector space V of dimension q, then we 
write G, = .2( V). The latter is formally constructed as the quotient of the tensor algebra 
T ( V )  by the two-sided ideal generated by the second rank tensors of the form 
x O y  + y @ x ,  for all x ,  y E V. The generating basis {m1}  is the image of a basis for V, 
included in T( V), under the canonical map T (  V) + A( V ) .  

~ C T ,  +U,CT, = 0 for all i, j ,  a particular case of which is U !  2 = 0. If we wish to emphasise 

In the literature of supersymmetry we find expressions of the form 

F = f o l  + c fiUl + c f iPiU, + . . . f 1 2 .  ,U1 (T2  , , , U,, 
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where the f are real or complex functions of real variables x = (xl, x2, . . . , x p ) ,  say. 
Such expressions have different interpretations according to taste and context. On the 
one hand (1) defines a Gq-valued function on RP, which we refer to as a Euclidean 
superfield. On the other hand the space of all expressions (1) forms an associative 
algebra under the obvious addition and multiplication. We shall presently define certain 
linear operators which act on a subalgebra of this algebra, but which in the superfield 
interpretation are differentiations. It is immaterial in the context of the present paper 
whether we think we are doing linear algebra on an associative algebra or whether we 
think we are doing calculus on Euclidean superfields. I t  is important to note, however, 
that it is possible to define superfields over manifolds and then considerable care must 
be taken over the handling of expressions of the form (1)-see the article of Kostant 
(1977) on graded manifolds and graded Lie groups. 

If the coefficient functionsf of the superfield F are sufficiently differentiable we can 
define new superfields dF/ax,, a2F/ax, ax,, etc, simply by differentiating the coefficients. 
More interestingly, however, is the possibility of differentiating with repect to the 
anticommuting ‘variables’. We define differential operators a/aa,, d 2 / a a l  aml, etc, as 
follows. If F is of the form x + fo(x) l ,  then aF/acr, is the zero superfield. If F is of the 
form x + f i ( x ) a J ,  then aF/aa, is the superfield x + f , ( x ) S , , l .  If F is of the form 
x + f i k ( X ) q v k ,  then aF/au, is the superfield x + f , k ( X ) ( 8 @ k  - 8 , k a J ) .  More algebraically 
we can write 

Generally, we have an alternating rule of signs for differentiating products of a’s. The 
higher-order superdifferential operators satisfy mixed derivative restrictions of which 
the simplest are a2/aui hi = -a2/aa, aai  and in particular a2/av? = 0. Superdifferen- 
tiations commute with ordinary differentiations and we have higher-order derivatives 
of the form a2/axi aai, etc. General linear superdifferential operators are constructed 
by taking linear combinations of these basic ones with superfield coefficients. The 
notion of a superdifferential equation D F  = F’, where D is a superdifferential operator 
and F, F’ are superfields, follows immediately. 

Now let L = L o O L l  be a LS, where the even space Lo has basis a l ,  a2, . . . , up, and 
the odd space L1 has basis a 1 ,  a2, . . . , aq. The graded Lie bracket is determined by the 
commutation/anticommutation relations 

k where the structure constants satisfy Cii = -e;!, Eif = Eik, for all relevant i, j ,  k ,  and 
also some more complicated relations obtained from the graded Jacobi conditions (A3). 

With the same notation as before construct the superdifferential operators 
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Then using the graded Jacobi relations it is easy to check that the operators {P(ai )}  and 
{Q(a,)}  satisfy the same commutation/anticommutation relations (2), (3),  (4) as do the 
generators {ai} ,  {a j}  of L. Furthermore, these operators actually provide us with the 
adjoint action of L on its graded symmetric algebra S ( L )  = S(L,)@A(L,), considered as 
a subalgebra of the algebra of superfields. To understand and prove this we recall first 
of all that the graded symmetric algebra S ( L )  of L is formally constructed as the 
quotient of the tensor algebra T ( L )  by the two-sided ideal generated by second rank 
tensors I 0 m - (- 1 j ‘ ( ’ ) u ( m ’  m 0 1 for all 1, m E L. Then the symmetric algebra can be 
considered as superfields whose coefficient functions are polynomials. The adjoint 
action of L on itself extends to T ( L ) ,  preserves the ideal, and hence passes to the 
quotient, uniquely as a graded derivation. The operators ( 5 ) ,  (6) are also graded 
derivations of the symmetric algebra, so it suffices, in order to prove that their action 
coincides with the adjoint action, to check that i t  is correct at the generator level. This is 
immediate from the calculations 

P 4 

P ( a l ) u l  = C DI:(+k, 
k = l  

‘1 P 

P(ai)xl = 1 c i : x k ,  
k = l  

Q(aI)(+, = 1 El:& k Q(a ,b ,  = - 1 D f l u k ,  
k = l  k = l  

I t  should be noted in these equations that there is a one-to-one correspondence 
between the generators x , ,  cl of S ( L )  and the basis elements a,, a, of L. 

We say that an element of the symmetric algebra is an invariant if it is annihilated by 
all elements of L under the adjoint action. It follows from what we have said above that 
U E S ( L )  is an invariant if and only if P(a l )u  = Q(a,)u = 0 for i = 1 , 2 , .  . . , p, j = 
1 , 2 ,  . . . , q. The search for invariants therefore devolves on the solution of systems of 
superdifferential equations. It should be noted, however, that such equations often 
have many solutions whose coefficient functions are not polynomials and hence lie 
outside of the symmetric algebra. 

3. Casimir invariants 

The second step in our programme for calculating Casimir invariants is the mapping of 
the centre of the graded symmetric algebra onto the centre of the enveloping algebra. 
The enveloping algebra U ( L )  is formally constructed as the quotient of the tensor 
algebra T ( L )  by the two-sided ideal generated by tensors of the form 1”- 
( - 1 ) d I ) d m )  m @ l - [ l ,  m ] ,  for all homogeneous 1, m E L .  U ( L )  contains L and is such 
that the graded Lie bracket on L is represented by a mixture of commutators and 
anticommutations, as appropriate. By extension of the adjoint action of L on itself, L 
acts as a set of graded derivations on U ( L ) ,  and then the Casimir invariants are those 
elements of U ( L )  which are annihilated by all of L. 

I t  was first proved by Ross (1965) that U ( L )  has as basis the set of elements 
{ u : ~ u : ~  . . . a b ~ a ; ~ a ; ~ .  . . a 2 :  A ,  non-negative integers and ei = 0 or 1). I t  is also easily 
seen that the graded symmetric algebra S ( L )  has basis the set of elements 
{ x ~ I x : ~ .  . . x ~ ~ ( + ~ ’ ( + ; ~ .  . . u2: A i  non-negative integers and ei = 0 or 1). U ( L )  and S ( L )  
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are manifestly isomorphic as vector spaces, though in general, not as algebras. 
Unfortunately this isomorphism does not carry invariants of S(L)  into invariants of 
U(L) .  The root of this failure is the lack of symmetry in U ( L )  with respect to 
reordering the basis of L. This can be overcome by use of the graded symmetrising 
map which we now describe, first by example and then in general. Because ~ 1 x 2  = ~ 2 x 1 ,  

but ala2#a2al  in  general, we cannot have x 1 x 2 + a l u 2  and x 2 x l + u 2 a l ,  so we 
compromise by mapping x 1 x 2 ,  hence x 2 x 1 ,  to -$(a la2+a2al ) .  Similarly we map u 1 ( ~ 2  to 
-$(a1a2-a2a1). More generally let U = y 1 0 y 2 0 .  . . By,  be a homogeneous element of 
T ( L )  of degree n, where r of the y ’ s  belong to Lo and s (= n - r )  of the y ’ s  belong to L1. 
The odd elements will be distributed in some particular order in U. Now let 7~ be an 
element of the symmetric group Sn, then define TU = x w ( u ) y , - q 1 ) y w - q 2 )  . . . Y ~ - I ( ~ ) ,  

where x T ( u )  is *l determined as follows: T rearranges the y ’ s  and in particular 
rearranges the odd elements. Then x T ( u )  is the parity of the permutation of degree s 
which would restore the odd elements to their original order relative to themselves. For 
example if U = a10a1@a2 and T = (1 2)(3), then TU = u1a1a2,  but if 7~ = (1 2 3),  then 
TU = -a2a1u1. If U E T ( L )  is a monomial of degree n we can map it  to U ( L )  and totally 
symmetrise it  by forming 

1 
n ! 

su=-  c TU. 

If U is not necessarily a monomial then it can be uniquely written as a sum of monomials 
of possibly different degrees, and we can separately symmetrize each component. The 
mapping S :  T ( L )  + U ( L )  so defined clearly induces a unique map S(L)  + U@),  which 
we shall denote by the same symbol S.  The manifest isomorphism between S ( L )  and 
U ( L )  which we observed above can be represented by the identity matrix. The 
transformation S,  just defined, has a triangular matrix with unity down the diagonal, and 
therefore provides an isomorphism. We claim that if U is an invariant of S(L) ,  then SU 
is an invariant of U(L) .  This follows from the following theorem. 

Theorem. Let D be a graded derivation of L. Denote also by D its unique extensions, 
as graded derivations, to S(L)  and U(L) .  Then SD = DS. 
Proof. It suffices to show that SD -DS annihilates monomials. 

Let U be a monomial of degree n. It is clear that each of SDu and DSu can be 
developed as a set of n . n ! monomials, and, furthermore, that the two sets agree except 
possibly in the signs attached to the terms. The problem is to check that the signs do in 
fact agree perfectly. 

Suppose u E S(L)  can be represented by y 1 @ y 2 0 .  . . By,  E T(L) ,  using our 
previous notation. The unsigned terms of SDu and DSu are of the form 
y w - 1 ( 1 ) y w - l ( 2 ) .  . . y w - ~ ~ i - l ) D y T - ~ ~ i ) y w - ~ ~ ~ + l ) .  . . yw-1( , ) .  This can be regarded as a conca- 
tenation of the result of applying a permutation of degree n + 1 to the ordered graded 
objects (0, y l ,  y 2 ,  . . . , y , } .  D acts on the y which appears immediately to its right and 
then all of the factors are multiplied together. The permutation which achieves this 
appears factorised in two different ways according as the monomial is obtained using SD 
or DS. The point is that the sign which should be attached to the monomial is the parity 
of the permutation which rearranges the odd elements of the ordered set 
{D, y 1 ,  y 2 ,  . . . , y , } .  The parity is independent of just how the permutation is factorised. 

Corollary. Let U be an element of S(L) .  Then U is an invariant in S(L)  if and only if Su 
is an invariant in U(L) .  
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Proof. If l E H ,  then DI, defined by Dim = [ I ,  m ] ,  for all m EL,  is a graded derivation of 
L. 

If U E S ( L )  is an invariant then DLSu = SDIU = 0, for all 1 E H ,  by the theorem and the 
invariance of U. Therefore SU is annihilated by all homogeneous elements of L,  so it is 
annihilated by all elements of L, which means that SU is an invariant in U ( L ) .  The 
converse is also true. 

Before discussing specific examples we note two features of S ( L )  which we some- 
times use to simplify even further the search for its invariants and those of U ( L ) .  The 
first concerns its double grading. In the first place S ( L )  is graded by the non-negative 
integers: if we put s'"'(L) equal to 

I, 4 

. . x;~cr;1(+;2. . .U> :  
r=l i = l  

then the span of {u1u2: K ~ E S ( " ' ) ( L ) ,  K ~ E s ( ~ ) ( L ) }  is s ( ~ + " ) ( L ) .  I t  is clear that 
S ( L )  = s'"'(L) and that each space of homogeneous elements S(") (L)  is stable under 

derivation. It follows that each invariant of S ( L )  can be uniquely written as a linear 
combination of homogeneous invariants. 

Further to this grading we have a finer two-fold grading. Let 4 be the grading 
automorphism of L, defined by d(lo+ f I )  = lo - 11, where lo E LO, 11 E LI.  4 satisfies 
d 2  = 1 and 4[l, m ]  = [ d ( l ) ,  4 ( m ) ]  for all I ,  m EL. 4 extends to T ( L )  and passes to the 
quotient S ( L )  as an involutive automorphism. The eigenspaces S(L)o and S ( L ) ,  which 
decompose S ( L )  are easily defined by their bases. A basis for S(L)o(l, has X?=l  ei = even 
(odd), Now S ( L ) ,  and S(L)l are both stable under even derivations but are mapped into 
one another by odd derivations. It follows that an invariant U E S ( L )  can be uniquely 
written U = u0+ ul, where K O E  S(L)o ,  U ,  E S(L)1 are both invariants, which we call the 
even and odd components of U,  respectively. It follows from this and what we said 
above that it suffices to seek the even and odd homogeneous invariants in S ( L )  to obtain 
a complete picture of the Casimir invariants of L in U @ ) .  The notion of evenness and 
oddness of Casimir invariants also makes sense, see Backhouse (1977b), but, in general, 
the degree of homogeneity is not defined. 

Our final remarks concern the use of generating sets for invariants. Suppose there 
exists a finite set {F1, F2, . . . , F,,} of invariants in  S ( L ) ,  which are functionally indepen- 
dent and which generate the algebra of invariants. By generate, we mean that any 
invariant can be written as a polynomial in the E:. We claim that {SF1, S F 2 , .  . . , SF,,} 
generate the algebra of Casimir invariants. To prove this let G be a Casimir invariant in  
U ( L ) .  Then, because S is an isomorphism, S-'G is an invariant in S ( L ) .  By hypothesis 
we can write S-'G = A(F1, F2, . . . , F,,) for some polynomial A. Consider G ' =  
A(SF1, SF2,. . . , SF,,). Clearly this lies in U(L) ,  and, being a function of Casimir 
invariants, is itself a Casimir invariant. In general G does not equal G' but they do 
agree in their highest order terms. To see this we only have to recall that, with respect to 
standard bases, the symmetrising map S has a triangular matrix with ones on the 
diagonal. So S fails to be an algebra isomorphism only by the introduction of 
lower-order terms. It follows that G - G' is a Casimir invariant of degree strictly less 
than the degree of G. Induction completes the argument-the induction is anchored by 
the observation that S maps a constant superfield to a multiple of the identity in U ( L ) .  

"Z-0 
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4. Examples 

In  a forthcoming paper, Backhouse (1978), we have classified all real LS of dimension up 
to four. We now compute the Casimir invariants of a selection of these algebras and 
also for the di-spin algebra. As far as notation is concerned, elements of Lo (or L,)  will 
be denoted by Latin (or Greek) letters taken from the beginning of the alphabet. The 
letters x ,  y ,  z (or r, T) will denote real (or anticommuting) variables. Other letters will 
denote real parameters. 

4.1. Example 1 

The two-dimensional algebra B has basis {a, a }  and is defined by the relation [a ,  a ]  = a. 
The superdifferential operator representation of the algebra is 

(8) 
a a 

Q ( a )  = -U-. 
aa ax 

P ( a )  = U- ,  

Clearly the only even superfield x + f ( x )  which is annihilated by the operators (8) 
has f ( x )  = constant. There is no odd superfield x + f ( x ) r  which is annihilated by (8). I t  
follows the B only has scalar multiples of the identity as invariants. 

4.2. Example 2 

The three-dimensional algebra CA has basis {a,  6, a }  and is defined by the relations 
[a ,  b ]  = 6, [a ,  a ]  =pa, p # 0. Its operator representation is 

(9) 
a a a a 

a y  ac+ ax ax 
P ( a )  = y-+pc+-, P ( b ) =  -y- ,  Q ( a )  = - p a - .  

The constant superfields are the only even invariants. An odd invariant (x ,  y ) +  
f ( x ,  y)c+ satisfies af/ax = 0 and y ( a f / a y )  +pf = 0.  I t  follows that f ( x ,  y )  is proportional to 
y-'. So, if p is not a negative integer, there are no invariants of CA, other than scalar 
multiples of the identity. If, however, p = -n, where n is a positive integer, then C!., 
has an odd invariant y"c+ in its symmetric algebra. Applying the symmetrising map to 
ynv,  noting that b commutes with a,  we obtain the Casimir invariant b"a. 

4.3. Example 3 

The four-dimensional algebra (C!, + A ) ,  given as the Jordan-Wigner quantisation 
algebra by Corwin et a1 (1975), has basis {a, 6, a, p }  and is defined by the relations 
[a, a ]  = a,  [a, p ]  = -p, [a,  p ]  = b. The operator representation is 

a a  
ac+ a7 

P ( a )  = r-- 7-, P( b )  = 0, 

(10) a a  a a  
Q(~)=--(T-++--, Q@)= 7-+y-. ax a7 ax ac+ 

Odd superfields are of the form ( x ,  y ) + f ( x ,  y ) u + g ( x ,  y ) ~ .  If such a superfield is 
annihilated by P ( a )  then f ( x ,  y ) a -  g(x ,  y ) ~  = 0 ,  so f = g = 0. Therefore there are no 
odd invariants. 
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Even superfields are of the form F :  ( x ,  y ) + f ( x ,  y ) + g ( x ,  Y ) U T .  Surprising at first 
sight is the fact that P ( a ) F  = 0 gives no information. However, both Q ( a ) F  = 0 and 
Q ( P ) F  = 0, give ( a f / a x )  + y g  = 0. If bothf and g are to be polynomials, then f has y as a 
factor and we can writef= y h ( x ,  y ) ,  g = - a h / a x .  Therefore the invariants in the graded 
symmetric algebra are of the form 

where h is an arbitrary polynomial in ( x ,  y ) .  It would be rather messy to explicitly map 
such an invariant to a Casimir invariant by means of the symmetrising map. Fortunately 
we have that the invariant (1 1) can be regarded as a function of the simpler invariants y 
and x y - a ~ .  Indeed these form a set of independent generators for the algebra of 
invariants. Furthermore, their images under the symmetrising map, b and $(ab + b a )  - 
P(aP-Pa), form a set of independent generators for the algebra of Casimir 
invariants. We see that we can choose two independent generators to be b and 

Corwin et a1 (1975) has the identification a = number operator N, b = 1, LY = a+,  
P =a, where a+,  a are creation and annihilation operators for a fermion. In this 
representation b takes the constant value 1 and ab -ab takes the constant value zero. 

ab -CY@.  

4.4. E x a m p l e  4 

Our  final example, the di-spin algebra, which is at the heart of spin change in 
supersymmetry, has already been well worked over, see Corwin e t  a1 (1973,  Pais and 
Rittenberg (1975), Backhouse (1977a, b). However, the computation of its well known 
single independent Casimir invariant falls so easily to our new approach, that i t  seems 
worthwhile repeating the exercise. 

LO has basis { L l ,  L2, L3}, L ,  has basis {q1/2, qW1/2}, and the relations are 

The operator representation is 
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i a l a l a  a a 
2 ax 2 a y  2 az am a 7  

i d l a i d  a a 
2 ax 2 a y  2 az a7 a c  

Q (4  1 2) = - - T--- T-- - v-+ ( y  + ix)-- iz- ; 

Q(qP1/2 )  = - - v - + - ~ ~ - + - 7 - + ( y  -ix)--iz--. 

Suppose an odd invariant superfield ( x ,  y,  z )  + f ( x ,  y,  z)v + g(x ,  y ,  z ) r  exists. 
Applying Q(q1/2)  to it  and equating the result to zero we get 

i a f  1 a f  i ag 
- - - 7(+ - - - 7v - - - v7 + ( y + ix ) f - i zg = 0. 

2 ax 2 a y  2 az 

This equation must hold for all ( x ,  y, z ) ,  so we deduce f = g = 0. Therefore there are no 
odd invariant superfields. 

Now let ( x ,  y ,  2) + f ( x ,  y ,  z )  + g(x ,  y, z ) m  be an even invariant superfield. In parti- 
cular it  is annihilated by P ( L , ) ,  P(L2) ,  P(L3) .  A simple calculation shows that 

J1 f + J ~ ~ u T  = J2 f + J ; ? ~ u T  = J3 f + J3ga.T = 0 ,  

where 

2 2 2  This implies J l  f = Jz  f = J3 f = J l g  = Jzg = J3g = 0.  We deduce f = F ( x  + y + z 1, g = 
G ( x Z + y 2 + z 2 ) .  The invariant is also annihilated by Q ( q l I 2 ) ,  Q(q-1/2) ,  which lead to 

Suppose f is homogeneous of degree n, then 

a f  a f  a f  
ax a y  az 

x-+ y-+z- = nf, 

from which we deduce ( x 2 + y 2 + z 2 ) g = - i n f .  So if  f = ( x 2 + y 2 + z 2 ) " / '  then g =  
- ; n ( x 2  + y 2 +  z * ) ( " / ~ ' - ~ .  The most general invariant of degree n is therefore 

(15)  (x2 + y 2  + z 2)"/2 - in(x '  + y 2  + Z2)("/Z)-1vr. 

But this can be written as [ ( x 2 +  y 2 +  ~ ~ ) - v r ] ~ / ~ .  The even invariants are generated by 
x 2 +  y 2 + z 2 - w .  The generator for the Casimir invariants is 

L: +L: +L: - : ( q l / 2 q - 1 / 2 - q - l / 2 q 1 / 2 ) ,  (16) 

as expected from previous calculations. 
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